Presenting with Power: Effectively and Dynamically Communicating Your Research

Christina Bourgeois

Georgia Institute of Technology
School of Electrical and Computer Engineering

UROP Workshop Series

March 24, 2009
80% of Your Presentation Will Be Forgotten

• People tend to remember
 – Tone
 – Pace
 – Nonverbal expressions
Planning Your Presentation

• What key points do you want your audience to remember?

• Structure your talk around the points and find ways to illustrate them.

• Have a clear beginning, middle, and end to your talk.
What? Why? How?

• The purpose of a research presentation is to summarize

 • **WHAT** you have been working on
 • **WHY** it is important
 • **HOW** you conducted your research
Customize Content for the Audience

• Who will be in the audience?

• What are their expectations?

• Are you presenting new material or building upon prior knowledge?

• How many attendees?

• Will the talk be interactive?

• How much time is allotted for the talk?
Content Guidelines for a Research Presentation

- Title slide (Highly descriptive title)
- Acknowledgements
- Research Question or Objectives/Goals
- Background
- Methodology (or Technical Approach)
- Results
- Discussion of Results
- Conclusions
- Future Work
- Questions slide
PowerPoint Do’s

• Include a descriptive title/heading line on every slide.

• Keep slides simple and uncluttered by using short phrases, not long sentences.

• Use consistent capitalization and punctuation on all slides.

• Use consistent verb tense on all bullet items.

• Number your slides.
Choosing a Font

Easy
- san serif
- block
- bold

Difficult
- serif
- italics
- plain

Examples:
- *helvetica*
- *arial*

Correct examples:
- sit

Incorrect examples:
- *times*
- *New York*
Effective Font Size

This is Helvetica 12 point (normal text)

This is Helvetica 18 point

This is Helvetica 24 point

This is Helvetica 36 point

This is Helvetica 48 point

Too small!
To Upper Case or to Lower Case, That is the Question

A Mixture of Upper and Lower Case Letters is Easier to Read Quickly and Accurately, and Takes Up Less Space on the Slide.

A mixture of upper and lower case letters is easier to read quickly and accurately, and takes up less space on the slide.
Choosing the Right Contrast and Colors

• White background with dark text is the norm at professional conferences.

• Dark backgrounds with light text project well.

• Red, orange, or blue lettering become unreadable when projected on dark background.

• Avoid “busy” slide designs, those with distracting borders or graphics; keep it simple and “clean.”
When to Show & When to Tell

• Make use of visuals wherever you can!
• People like to see what you’re doing:
 – Diagrams
 – Photos
 – Flow charts
 – Tables
• Use text when you present concepts that you can’t show or when words help to describe the visual.
Let’s look at some examples of effective use of graphics
How to Show Effectively

Average monthly high and low temperatures in four U.S. cities

<table>
<thead>
<tr>
<th>Month</th>
<th>Seattle</th>
<th>Atlanta</th>
<th>Kansas City</th>
<th>Honolulu</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>46/57</td>
<td>54/66</td>
<td>39/42</td>
<td>82/73</td>
</tr>
<tr>
<td>February</td>
<td>49/58</td>
<td>57/67</td>
<td>44/56</td>
<td>82/73</td>
</tr>
<tr>
<td>March</td>
<td>53/40</td>
<td>63/41</td>
<td>53/63</td>
<td>82/73</td>
</tr>
<tr>
<td>April</td>
<td>59/44</td>
<td>72/50</td>
<td>66/45</td>
<td>82/73</td>
</tr>
<tr>
<td>May</td>
<td>66/49</td>
<td>81/59</td>
<td>75/55</td>
<td>82/73</td>
</tr>
<tr>
<td>June</td>
<td>70/53</td>
<td>87/66</td>
<td>85/66</td>
<td>82/73</td>
</tr>
<tr>
<td>July</td>
<td>75/56</td>
<td>88/69</td>
<td>91/71</td>
<td>82/73</td>
</tr>
<tr>
<td>August</td>
<td>74/56</td>
<td>88/68</td>
<td>89/69</td>
<td>82/73</td>
</tr>
<tr>
<td>September</td>
<td>69/53</td>
<td>83/63</td>
<td>82/60</td>
<td>82/73</td>
</tr>
<tr>
<td>October</td>
<td>60/48</td>
<td>74/52</td>
<td>71/49</td>
<td>82/73</td>
</tr>
<tr>
<td>November</td>
<td>52/42</td>
<td>62/40</td>
<td>54/65</td>
<td>82/73</td>
</tr>
<tr>
<td>December</td>
<td>48/39</td>
<td>53/45</td>
<td>43/27</td>
<td>82/73</td>
</tr>
</tbody>
</table>

Average monthly high temperatures in four U.S. cities

![Graph showing average monthly temperatures for four U.S. cities: Seattle, Atlanta, Kansas City, and Honolulu. The graph illustrates temperature variations across different months.]
What Works

Specimen #1
6.35mm/0.25” long edge notch introduced in 10 length increments (notch width of 0.025mm/0.01”)

Specimen #2
6.35mm/0.25” diameter hole drilled in 11 increments

Aluminum
50.8mm x 152.4mm x 4.76mm
(2” x 6” x 3/16”)

2.25 MHz, 12.7mm diameter piezoelectric discs bonded to top surface

25.4 mm
101.6 mm
89.6 mm
152.4 mm
12.7 mm
50.8 mm
"High Level" Flow Chart

Start

Define channel sequence and parameters

Ready to acquire?

No

Acquire/store single measurement from all channels

Yes

Done?

Yes

Stop

Parameters for each channel are transmitter, receiver, P/R setup file, and TDS5034 setup file

Initiated either by keystroke or timed
Ultrasonic Signals from Nominally Identical Samples

- Undamaged Specimen #1 at Room Temperature
- Undamaged Specimen #2 at Room Temperature
And here’s what doesn’t work
What Doesn’t Work

Medtronic Delta Valve

Codman Hakim Programmable Valve

Medtronic Strata Valve
Mechanical Assembly Drawing
Schedule of Due Dates

<table>
<thead>
<tr>
<th>Recommended Presentation Content</th>
<th>Proposal Report</th>
<th>Design Review Presentation</th>
<th>Final Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Qualitative Project Goals (brief)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2. Quantitative Project Specifications</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3. Background Research: State of the Art</td>
<td>X</td>
<td>audience relevant</td>
<td>X</td>
</tr>
<tr>
<td>4. Status</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5. Schedule (GANTT or similar chart)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6. Budget</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7. Results</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Highlights:
- Contrast candidate paths and commit
- Status
- <10 minutes

Duration:
- <10 minutes
- < 15 minutes
Now let’s look at some

Before and After
examples
System Description

• PC-Based Oscilloscope (TDS5034)
 – Controls multiplexer via USB interface
 – Controls pulser-receiver via GPIB interface
 – Runs LabView

• Pulser Receiver
 – Signal output goes to scope input and is digitized
 – Transmit and Receiver are connected to the Mux

• Eight Channel Multiplexer
 – Supports up to 8 transducers
 – Routes Transmit and Receive to/from transducers
 – USB interface with scope PC
System Block Diagram

- Much clearer
- More information
Ultrasonic Structural Health Monitoring System

• Sensor Cluster
 – Multiple ultrasonic sensors (up to 16 per cluster)
 – Each sensor can operate as a transmitter or a receiver
 – Synchronization between all sensors in a cluster
 – Processing capabilities for local data analysis

• Structure with Multiple Sensor Clusters
 – Local sensors for monitoring small areas
 – Global sensors for monitoring large areas

• Wireless Link
 – Sends raw waveforms or processed data to base station
 – COTS USB link (2.4 GHz)

• Base Station
 – Further processing of data
 – Can link/combine data from multiple sensor clusters
Ultrasonic Structural Health Monitoring System
Remember These?

- Title slide (Highly descriptive title)
- Acknowledgements
- Research Question or Objectives/Goals
- Background
- Methodology (or Technical Approach)
- Results
- Discussion of Results
- Conclusions
- Future Work
- Questions slide
Let’s look at a few more examples of what works and what doesn’t
Methods for Quantifying Changes in Diffuse Ultrasonic Signals with Applications to Structural Health Monitoring

Jennifer E. Michaels, Yinghui Lu, and Thomas E. Michaels

Georgia Institute of Technology
School of Electrical and Computer Engineering

10th SPIE International Symposium
Nondestructive Evaluation for Health Monitoring and Diagnostics

March 6-10, 2005
Project Overview

• Monitor continuously integrity of critical structures, using permanently attached ultrasonic sensors.

• Apply technology for monitoring commercial airliners, bridges, and buildings. Primary client is Air Force.

• Estimate development costs at $3 million; initial cost of a deployed system, including instrumentation and wiring, should be less than $150,000.
Design Objectives: Weak

- Monitor structures
- Have attached ultrasonic sensors
- Read sensors
- Record waveforms
- Determine condition of structure
Design Objectives: Better

- Monitor continuously health of critical structures (airplanes, buildings) in real-time
- Attach permanent ultrasonic sensors near, on, or in structure
- Interrogate sensors, record waveforms
- Analyze waveforms to determine if structure has developed internal flaws or pre-flaw conditions
Technical Approach: Weak

- Pulse with transducer
- Flood with energy and look for diffuse waves
- Introduce temp. changes and defects
- Goal is to detect minimum flaw in the presence of temp. changes.
Technical Approach: Better

• Pulse with one transducer and receive with other
• Flood structure with energy, record response until energy has substantially died out (diffuse waves)
• Introduce temperature changes and artificial defects (separately and simultaneously)
• Goal is to discriminate between temperature changes and defects and to quantify minimum detectable flaw size in the presence of temperature changes
Measured Ultrasonic Signals

- Undamaged Specimen at Room Temperature
- Undamaged Specimen at 10°C (50°F)
- Specimen With 6.35 mm (0.25”) Hole

Time (microseconds)
Short-Time Fourier Transform

Undamaged Specimen At Room Temperature

Undamaged Specimen At 10°C (50°F)

Specimen With 6.35mm (0.25”) Hole
Data: Weak

- Waveforms were recorded at various temperatures.
- Waveforms were recorded at various temperatures as notch was enlarged.
Experimental Data: Better

• Specimen #1
 – 65 waveforms recorded from undamaged specimen at various temperatures
 – 397 waveforms were recorded from damaged specimen at various temperatures as notch was enlarged from 0.025” to 0.25” in length

• Specimen #2
 – 98 waveforms recorded from undamaged specimen at various temperatures
 – 64 waveforms recorded from damaged specimen at various temperatures as hole was enlarged from 5/64” to 0.25” in diameter

• Goal: detect damage while minimizing false alarms
Future Work

• Implement data fusion at feature level to improve detection performance
• Develop, implement methods for estimating flaw sizes
• Investigate effect of flaw type and location on detection sensitivity
• Consider more complicated specimens with real defects
Project Summary

• Four candidate methods for comparing diffuse ultrasonic signal to baseline have been identified and evaluated for detecting damage in presence of temperature changes

• All four methods perform reasonably well if large number of baseline waveforms span expected temperature range
Presenting With Style: Looking as Good as Your Slides

• Think conservative.
• Clean, pressed shirts and slacks/skirt.
• Men—white t-shirt under button down or polo shirts.
• Shoes and belt should be same color.
• Women—knee length skirts, moderate heel, minimize accessories.
• Nothing tight or trendy.
Performance Techniques: Bringing Your “A” Game

• Take several deep breaths.

• Stand up straight—pay attention to your posture.

• Make eye contact with your audience.

• Project your voice.

• Pace the rate of your speech so that it is natural and moderate.

• Monitor your gestures and avoid habitual behaviors (hands in pocket, playing with your hair, pacing).
Presentation Never’s

• **Never** run over your time limit. Ever!

• **Never** apologize for any aspect of your presentation. If you have to apologize, you aren’t prepared.

• **Never** respond aggressively to a question or comment. Even if you are right, the whole audience will resent you for picking on that poor questioner.
Top 5 Secrets of the Pros

5. Tour the space you’ll be presenting in prior to your talk.

4. Make sure the room’s technology is compatible with yours.

3. Stand to one side of the projection screen instead of behind the podium.

2. Use the “meteorologist chop” instead of a laser pointer or a cursor.
And the #1 Secret…

Practice!

A lot!
Questions?
Use the story board method to draft your presentation

Here are some sample slides to help you organize your work
Title Slide
Acknowledgements

- Sponsors
- Advisors
- Funding source
Description of Research

- What
- Why
- How
- Results
Show Your Work or Things Like Your Work

• Illustrations
• Diagrams
• Photos

Show the audience what you’ve been doing
 – Show the actual thing
 – Show a diagram/figure/illustration of the thing
 – Show something that is like your thing
Background

- Prior art
- Summarize work being done in the field
- Explain concepts/terms
- Provide context
Your Research Methods
Problems/Issues Encountered

• Sometimes the best “story” about your research is what didn’t work

• What problems/issues arose? How did you overcome them or solve them?
Results

• Quantify your results

• Show your results—tables, data, schematics, figures, photos,
Significance of Results

• What is important about the results?

• How can the results be applied to the real world or to your field?

• What do these results mean?

• What are the wider implications of the results?
Future Work

• What areas of your research need to be continued?

• What additional work needs to be done to complete this research?

• Be specific
Last Slide

• The last slide could be your Future Work slide.

• You could also have a “Discussion” slide where you pose some questions or bullet points that guide the Q&A that will follow your presentation.
Extra Slides

• If you anticipate that your audience might have questions about a particular aspect of your work, you could prepare extra slides that can easily be pulled up during the Q&A.

• You could also create a handout for your audience.